av日韩亚洲,一本一本a久久,亚洲一区二区三区,亚洲一区二区三区免费视频

鉭的焊接技術(shù)研究進(jìn)展

來源:期刊VIP網(wǎng)所屬分類:工業(yè)設(shè)計時間:瀏覽:

  摘要:鉭在武器裝備、原子能、航天領(lǐng)域具有重要作用,但鉭的焊接極為困難,僅有少數(shù)國家具備焊接能力。綜述了國內(nèi)外鉭焊接的主要研究機(jī)構(gòu)、研究內(nèi)容、研究現(xiàn)狀和發(fā)展趨勢,調(diào)研結(jié)果表明:鉭的焊接熱源出現(xiàn)由弧焊向激光焊、電子束焊轉(zhuǎn)變的趨勢;主要研究趨勢為基于焊接有限元模擬、材料計算結(jié)果來改進(jìn)焊接工藝,進(jìn)而獲得高質(zhì)量焊縫。國內(nèi)鉭焊接方法較為齊全,但研究深度不足,尤其是焊縫成形機(jī)理研究、焊縫組織調(diào)控方法、有限元分析等方面幾乎處于空白階段,需要大量深入的理論研究突破技術(shù)壁壘。

  關(guān)鍵詞:鉭;氬弧焊;電子束焊接;激光焊接;研究進(jìn)展

工業(yè)期刊投稿

  0 前言

  鉭被譽(yù)為耐蝕性最好的金屬,除氫氟酸外不被其他酸侵蝕,且熔點(diǎn)高達(dá)2 996 ℃,富有延展性,熱膨脹系數(shù)小,是典型的難熔金屬之一,在超導(dǎo)、芯片、航空航天、化工、原子能、醫(yī)療器械等尖端技術(shù)領(lǐng)域具有不可替代的作用。鉭及其合金的典型應(yīng)用有:航空發(fā)動機(jī)或燃?xì)廨啓C(jī)中的葉片、燃燒室耐熱管道、耐熱器件等,對撞機(jī)中的超導(dǎo)零部件、腔體,石油化工領(lǐng)域的耐蝕容器、管道,原子能工業(yè)中的中子防護(hù)板、核島外殼、快中子反應(yīng)堆控制材料,芯片行業(yè)的濺射靶材,醫(yī)學(xué)上的人工骨材料、各類支架等,是一種重要的戰(zhàn)略物資[1-2]。

  在尖端工程上,高可靠、免維護(hù)、長壽命零部件的需求與日俱增,用鉭及其合金替代部分材料已成歷史必然。工程應(yīng)用中的鉭通常作為關(guān)鍵功能件發(fā)揮作用,而功能件尤其是復(fù)雜結(jié)構(gòu)功能件的生產(chǎn)往往需要經(jīng)過焊接加工。鉭的焊接面臨三個關(guān)鍵技術(shù)難點(diǎn):一是鉭材熔點(diǎn)高,焊接難度大[3];二是鉭材一般應(yīng)用在強(qiáng)酸、超高溫等極端環(huán)境中,對焊縫質(zhì)量要求極高[4];三是鉭在高溫狀態(tài)下極易與空氣中的氧、氮反應(yīng),形成鉭化合物脆化焊縫。因此,要得到可靠的鉭焊縫極其困難。

  國外少數(shù)核工業(yè)、航天工業(yè)發(fā)達(dá)的國家已掌握了鉭的焊接技術(shù),在焊接工藝、焊縫成形理論、焊接有限元模擬、焊縫組織/成分、腐蝕行為、工業(yè)化應(yīng)用等方面取得了一定的成果[1]。相比較而言,國內(nèi)鉭的研究起步晚、研究機(jī)構(gòu)少,僅個別科研院所開展了鉭的焊接實(shí)驗(yàn),且缺乏系統(tǒng)的理論研究。

  文中綜述了國內(nèi)外研究機(jī)構(gòu)在鉭的焊接方面的最新研究進(jìn)展,為國內(nèi)特種焊接研究人員開展鉭及其他難熔金屬焊接提供參考。

  1 鉭的焊接研究進(jìn)展

  美國、德國、法國、俄羅斯等工業(yè)、軍工業(yè)發(fā)達(dá)的國家均開展了鉭金屬焊接研究,尤其是美國對鉭金屬的研究起步早、深入、全面。目前,國際上鉭的焊接研究主要集中在焊接工藝研究、焊接有限元分析、焊縫腐蝕和成形機(jī)理研究等方面,通過系統(tǒng)的組織性能表征評價焊縫質(zhì)量,進(jìn)而改進(jìn)焊接工藝獲得高質(zhì)量焊縫,相關(guān)技術(shù)應(yīng)用于航天、化工裝備等領(lǐng)域。我國在鉭焊接方面的研究集中在鉭功能件的制備生產(chǎn)方面。

  1.1 焊接熱源及其焊接工藝研究

  目前國際上主要的鉭焊接方法包括鎢極惰性氣體保護(hù)焊、激光焊、電子束焊、爆炸焊等,由于熱影響區(qū)組織調(diào)控的需求,高能量密度的激光焊、電子束焊成為目前主流的焊接方法;鎢極惰性氣體保護(hù)焊由于在高溫階段升溫速度慢、易形成粗大的熱影響區(qū)組織,作為第一代熱源已逐步被替代;爆炸焊則主要用于制備鉭復(fù)合板材。美國、德國等主要的鉭焊接研究國家對其焊接工藝開展了較為深入的研究。

  美國國家宇航局早在1973年就采用鎢極惰性氣體保護(hù)焊方法,在鉭材焊接領(lǐng)域取得了重大進(jìn)展,在氦氣保護(hù)下焊接鉭板熔深達(dá)9.52 mm,并開展了大量力學(xué)性能測試,形成了93頁技術(shù)文件[5]。但遺憾的是,弧焊在高溫區(qū)時升溫速度慢、加熱時間長,極易造成焊縫晶粒粗大、內(nèi)應(yīng)力較高等問題,因此利用該技術(shù)得到的焊縫難以避免地存在熱裂紋缺陷。

  為緩解熱裂紋問題,美國科研人員在鉭的弧焊焊接工藝方面開展了一系列的研究,如電弧電磁振蕩和電流脈沖對鉭片焊縫組織影響規(guī)律的研究[6]、表面硅化物涂層對焊縫性能影響規(guī)律的研究[7]等,一定程度上改善了熱裂紋缺陷的發(fā)生。

  顯然,弧焊并不是鉭的理想熱源,隨著激光技術(shù)的發(fā)展,美國國家能源局勞倫斯利弗莫爾國家實(shí)驗(yàn)室(lawrence livermore national laboratory,LLNL)在1985年首次將激光焊接應(yīng)用于鉭的焊接[8],打開了激光焊接鉭及其合金的大門。在接下來的30年中,激光焊接成為鉭焊接的主流方法。美國相關(guān)研究機(jī)構(gòu)的激光焊接設(shè)備由固體激光器升級為光纖激光器[9],激光功率由最初的400 W提升至6 kW[10],并在焊接工藝方面開展了大量研究[10-12],相關(guān)成果應(yīng)用于航天器件、武器裝備的生產(chǎn)與修復(fù)[9],部分焊接效果如圖1所示。法國鉭焊接研究機(jī)構(gòu)也采用了激光焊接路線,應(yīng)用于鉭-鉭[13]、鉭-鈦[14]等同種、異種金屬焊接,獲得了高質(zhì)量焊縫。

  與美國、法國等以激光作為主流焊接熱源不同的是,德國采用電子束焊焊接鉭及其合金,其研究主要集中在鉭泰克(Tantec)、世泰科(H.C.Starck)等企業(yè)中,專注于鉭的換熱器、管道、容器等化工裝備的整體加工制造,研究內(nèi)容涵蓋焊接工藝、鉭焊縫腐蝕行為、耐蝕性等方面[15],其商用產(chǎn)品已經(jīng)占據(jù)市場主導(dǎo)地位;俄羅斯則采用爆炸焊的方法制備鉭復(fù)合材料,在2016年制備出銅-鉭、銅-鈦復(fù)合板,并研究了結(jié)合界面的形貌及爆炸焊工藝規(guī)律[16]。

  中國經(jīng)濟(jì)的飛速發(fā)展為我國鉭鈮研究機(jī)構(gòu)、企業(yè)奠定了堅實(shí)的經(jīng)濟(jì)基礎(chǔ),國內(nèi)焊接裝備水平達(dá)到行業(yè)先進(jìn)水平[17]。國內(nèi)鉭的焊接方法囊括了氬弧焊[18-22]、電子束焊[23-28]、激光焊[29-30]、爆炸焊[31]等,與國際主流焊接方法一致;但國內(nèi)鉭焊接研究的重點(diǎn)在攻克具體焊接焊接工藝、解決鉭功能件具體生產(chǎn)制備技術(shù)方面[18-19,23-24];部分科研院所如哈爾濱工業(yè)大學(xué)、北京工業(yè)大學(xué)等的研究重點(diǎn)在焊縫的組織、性能表征等方面[25-27,30]。

  推薦閱讀:航空史研究航空工程師職稱論文

主站蜘蛛池模板: 田林县| 济南市| 永年县| 永和县| 凤台县| 平凉市| 南康市| 行唐县| 咸宁市| 安岳县| 孙吴县| 安徽省| 汉中市| 南安市| 昂仁县| 玉环县| 宜昌市| 额济纳旗| 香格里拉县| 滦平县| 胶州市| 衡东县| 雅江县| 南溪县| 外汇| 南汇区| 连江县| 西盟| 元江| 南召县| 双桥区| 文水县| 长沙市| 团风县| 巍山| 敦化市| 普洱| 图木舒克市| 潞西市| 井陉县| 句容市|