av日韩亚洲,一本一本a久久,亚洲一区二区三区,亚洲一区二区三区免费视频

ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS

ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS期刊基本信息

  • 簡稱:ESAIM CONTR OPTIM CA
  • 大類:數學
  • 小類:自動化與控制系統
  • ISSN:1292-8119
  • IF值:1.295
  • 是否SCI:SCIE
  • 是否OA:No
  • 出版地:FRANCE
  • 年文章數:71
  • 審稿速度:較慢,6-12周
  • 平均錄用比例:容易
投稿咨詢

ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS中文簡介

ESAIM: COCV致力于在控制、優化和變異計算領域快速有效地發表論文和調查。文章可以是理論性的,計算性的,或者兩者都有,它們將涵蓋前沿技術、生物科學、材料科學、計算機視覺、連續物理、決策科學和其他相關學科的影響的當代主題。有針對性的主題包括:控制:建模、可控性、最優控制、穩定、控制設計、混合控制、魯棒性分析、控制的數值和計算方法、隨機或確定性、連續或離散控制系統、有限維或無限維控制系統、幾何控制、量子控制、博弈論;優化:數學規劃、大型系統、隨機優化、組合優化、形狀優化、凸或非光滑優化、反問題、內點法、對偶法、數值方法、收斂與復雜性、全局優化、優化與動力系統、最優傳輸、機器學習、圖像或信號分析;變分學:微分方程和哈密頓系統的變分方法,變分不等式;半連續性與收斂、極小化器的存在性與正則性、泛函的臨界點、松弛性幾何問題與幾何測度理論工具的使用與發展涉及隨機性的問題;粘度的解決方案;數值方法;均勻化、多尺度和奇異攝動問題。

ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS英文簡介

ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations.Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines.Targeted topics include:in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory;in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis;in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.

國際期刊推選 論文翻潤預審發表!

選擇豐富服務快速通過率高一鍵快速領取私人專屬發表方案!

* 請認真填寫需求信息,學術顧問24小時內與您取得聯系。

主站蜘蛛池模板: 崇文区| 绍兴县| 石首市| 秦皇岛市| 罗江县| 张家界市| 通榆县| 台中市| 永嘉县| 金华市| 固始县| 北川| 天津市| 方城县| 灌云县| 竹溪县| 兴海县| 临城县| 银川市| 长葛市| 深水埗区| 寻乌县| 星子县| 文水县| 伊通| 新干县| 湟源县| 宜兰市| 政和县| 万荣县| 赫章县| 万安县| 肥西县| 伊通| 阿拉善盟| 赣州市| 菏泽市| 琼结县| 云霄县| 葫芦岛市| 甘南县|